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S SPACE operations progress, man will be required 
to perform many physical functions while weight- 

less. These functions will include extra-vehicular activ- 
ities such as spacecraft assembly, maintenance, supply, 
and personnel rescue. The astronaut, floating free from 
space vehicle, will experience degrees of freedoan 
never encountered on earth or in a space capsule. 
While "situated in a state of imponderability, "6 any 
force or torque applied by or to man will result in 
translational and/or angular accelerations or decelera- 
tions. Internal forces and torques will be generated 
and reacted throughout his body as he moves, and may 
produce angular motions. 5 To maneuver and work in 
space, the astronaut of the future must be equipped 
with a system to provide propulsion, stabilization, and 
life support. 

The most desirable characteristics of this self,maneu- 
vering and life support system are maximum freedom of 
motion for the man, and minimum mass for the system. 
These criteria make the system dynamics heavily de- 
pendent upon the dynamic response characteristics of 
the human body. A gap exists, however, between 
anthropometric data and dynamic parameters needed 
to design a self-maneuvering unit for the astronaut. A 
mathematical model which will represent the biD- 
mechanical properties of the human ,body is needed 
to bridge this gap. The purpose of this, paper is to 
describe such a model. It is concerned with only those 
major dynamic effects which result when the human 
body is subjected to unbalanced forces, and not the 
physiological and psychological problems of manned 
space flight. The development and analysis of the model 
is followed by the description of an effort to validate 
the model experimentally. 

THE MATHEMATICAL MODEL 

The most important parameters (o r  biomechanieal 
properties) which determine the body's dynamic re- 
sponse characteristics are total mass, location of the 

center of mass, and moments of inertia. When these 
properties are incorporated into the math model, the 
model can then be used to predict analytically how the 
body will respond. 

Factors such as elasticity and damping of the body 
structure do not appear to have any significant effect 
on the design of the self-maneuvering unit and are 
not considered here. 

To develop the math model, the human body is 
idealized in the following manner: 

1. The human body is divided into a finite number 
of masses (or segments) which are considered to be 
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Fig. 1. Segmented man and model 
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Fig. 2. Comparison of local to transfer moment of inertia terms 
(expressed as a per cent of the total moment of inertia). 

rigid and homogeneous, and a finite number of degrees 
of freedom (or segment hinge points). 

2. Each segment is represented by a geometric body 
which closely approximates the segment's shape, mass, 
mass center, leagth, and average density. 
Thus, the model may be thought of as a system of rigid, 
homogeneou.s bodies of relatively simple geometric 
shape, hinged together in such a manner as to resemble 
the human body. 

The segmentaeion of the body and the representative 
geometric bodies are shown in Figure 1 for a 14-seg- 
ment model. The dimensions of the segments are based 
ei0her on actual body measurements of a particular 

individual or on statistical anthropometric data. Because 
mass, center of mass, and density of the segments can 
not yet be determined accurately, this information is 
also based on statistical data. z 

The variation of the center of mass of the human 
body has been studied extensively a and can be accu- 
rately predicted for a given body position wi0hout too 
much difficulty. The height of the model's center of 
mass is found to be 56.6 per cent of the stature. This 
falls within the 55 to 57.4 per cent range determined 
experimentally by Dempster z and agrees closely with 
an average of 55.6 per cent measured by Swearingen r 
on five living subjects. 

Predicting the moments of inertia is somewhat more 
involved and likely to be less accurate. Therefore, the 
14-segment model of Figure 1 was analyzed to deter- 
mine: 

1. which segments have the greatest effeet on the 
total moment of inertia, 

2. the effect of approximation errors due to represent- 
ing the segments by geometric bodies, 

3. and which segments can be further simplified 
without a significant loss in accuracy. 

The moment of inertia of the whole body ~bout a 
given axis is equal to the sum of the moments of inertia 
of all the segments about that axis. The moment of 
inertia of each segment is given by the parallel axes 
transfer equation 

I --Ic.g.  q -md ~ (1) 
where Ie.g. ~ Local Term = Moment of inertia of the 
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segment about an axis through its mass center, md 2 
Transfer Term : Product of the segment mass (m) 
and the square of the prependicular distance (d)  
between parallel axes through the segment's mass 
center (same axis as for local term) and the whole 
body center of mass 

First, it is cff interest to compare the local and transfer 
terms for the whole body. In Figure 2, the local and 
transfer terms are expressed as percentages of ~he total 
body moment of inertia for the two positions and axes 
shown. It is readily apparent that the local terms play 
a significant part for many body positions. The methods 
of calculating local moments of inertia for the segments 
and the values used here are described. 8 

When the local terms axe examined individually, 
however, some terms are found to be negligible. This 
can be seen from Figures 3 and 4. The positions "a" 
and "b" are shown schematically in Figure 5. Con- 

Fig. 5. Body positions. 

sequently, it is unnecessary to compute the local mo- 
ments of inertia for the hands, lower arms, and feet 
because their sum is less than the errors caused by 
simplifying the human body. Furthermore, the geomet- 
ric representation for the upper arms, upper legs, lower 
legs, and head need not be too accurate. For instance, 
a 33 per cent variation in the local moment of inertia 
of the upper arm would change the total moment of 
inertia (for the standing position) about the Y-axis 
only • 0.1 per cent. The local moments of inertia of 
the frusttmas of right circular cones can be approximated 
within • 5 per cent wi~h right circular cylinders. How- 
ever, care must be exercised to use the correct mass 
center location. The local moment of inertia of the 
torso must be computed more accurately because it 
may cont~bute 10 per cent to 35 per cent of the total 
moment of inertia depending on the axis and position. 

Based on the above results, a siml~lified method is 
derived for computing the moments of inertia for vari- 
ous body positions. Startir~g with the moments of inertia 
for the standing position as initial conditions (Ixo, 
Iyo, Izo), this method yields the moments of inertia 
for any other position ( Ix, Iy, Iz) by taking into account 
only the changes in the transfer terms and the relative 
position of the body axis system. This approach greatly 
simplifies the mathematics, and although it neglects 
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Fig. 6. Typical plots of the  torque that  man can exert while 
weightless as a function of trine. 

the changes in the local terms, there is only a slight 
reduction in accuracy. 

The moment of inertia of a model (consisting of "p" 
masses or segments) about the x-axis for the standing 
position is given b y  

p 

+ + ,',o ) 
(2) 

When the body position changes, the moment of inertia 
about the same axis is given by 

P P 

O . =  ~ '~"  [ = l  

(3) 

To fin, d the moment of inertia about a parallel axis 
through the center of mass for this new position, the 
Parallel Axis Transfer Theorem is used 

, (_z ) 
(4) 

NOW 

Ix 
P 
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Subtracting Eq 2 from Eq 5 

p P 

p 

iffil ~ " i= I 
(6) 

Assuming the local terms do not change 

P 

~=t  ='~" "= �9 �9 

(7) 

and Eq 6 becomes 

i I  

,, , , : )  - - M 

(s) 

Now if only "n" masses change position, the coordinates 
of the "p-n" ,masses will remain the same and will 
cancel out. Then 

(9) 

In a similar manner the equations for the moments and 
products of inertia about the other axes are found to be 

(10) 

Ix 
- -  - -  *-.. + 

lv . i  

(1i) 

rt 

~ = •  
Mr=, nat{ ~ i -  x~,) 

(12) 

la 

1"4 ~__.j 

(13) 

n 

(14) 
ml~---mass of the ith segment 

xt yi z, ~ coordinates of the center of mass of the ith 
segment after some change 

X~o yio Zio ~ coordinates of the center of  mass of the ith 
segment before some change 

M ~ total mass 

and "n" is the number of segments which change 
position from the initial conditions. For instance, ff one 
arm is raised from the standing posit/on, the center of 
mass of the upper arm, lower arm, and hand will 
change. Three segments are involved so n z 3 and wl 
might refer to the mass of the upper arm, m2 to the 
mass of the lower arm, and m3 to the mass of the hand. 

It is pointed out that Eqs 12, 13 and 14 are exact and 
will always yield the coordinates of the new center of 
mass with respect to the center of mass location for the 
standing position. 

Up to this point, nothing has been said about products 
of inertia (Ixy, Iyz, and Izx). It should be realized that 
vchile in the standing position, the ,body axis system 
coinmdes with the principal axes of inertia and there 
are no products of inertia, this will not be true in 
general. Principal axes of inertia are defined as a set of 
orthogonal axes about which the products of inertia are 
zero. In fact, in the crouched position (Fig. 2) the 
principal axes are tilted forward (rotated about the 
y-axis) approximately 8 ~ from the body axes. There- 
fore, a product of inertia exists. 

From Eqs 9, 10, and 11, the moments of inertia of the 
model are computed for other positions. These results 
are compared with exact results taking the local terms 
into account in Table I. 

It should be noted that the approximate method yields 
exact results for Ix, position "c," and Iy, position "b." 
This occurs because there is no change in the local 
moment of inertia terms Ix~. r. for position "c" and 
Iye.g. for position 'q)." 

E X P E R I M E N T A L  E F F O R T  

Because it was desired to have some basis of com- 
parison for the calculated moments of inertia, a test was 
conducted to determine experimentally the moments of 

T A B L E  I. C O M P A R I S O N  O F  M O M E N T S  O F  I N E R T I A  F R O M  E X A C T  

A N D  A P P R O X I M A T E  M E T H O D S  

Moments of Inert ia  (Slug-ft. e) 
Method Ix for Position I r  for Position Is  for Position 

" b "  "e"  " b "  "c"  " b "  "'c" 

Exact 3.0496 12.225 2.9445 8.8430 1.0004 3.6210 
Approximate 3.0845 12.225 2.9445 8.7917 0.9668 3.5356 
Error  +1 .14% 0.00% 0.00% -0.58% -3.36% -2.36% 
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inertia of a living subject. The approach taken was 
to determine experimentally the resultant angular ve- 
locity of the body after a known torque was applied. 
The procedure was to have the subject apply this 
torque to a rigidly mounted handle during a period 
of simulated weightlessness and measure the resulting 
spin velocity. 

This approach, then, required that first the nature of 
the torque that weightless man could exert be known. 
Because this is an area which is of considerable interest 
to many investigators, 2 it was decided that the torque 
input be obtained experimentally as a bonus to de- 
termining the moments of inertia. 

The nature of the torque was determined under simu- 
lated zero gravity conditions on board a USAF KC-135 
jet transport flying parabolic trajectories by personnel 
of the 6570th Aerospace Medical Research Laboratories 
at Wright-Patterson Air Force Base, Ohio. During 
periods of weightlessness, subjects grasped a rigidly 
mounted handle and applied, with near maximum effort, 
a quick torque of approximately 1-second duration. The 
handle was instrumented and calibrated so that the 
torque exerted was plotted as a function of time. As 
a result of the torquing, the subjects began to spin; the 
angular velocity of the spin was measured from motion 
picture films of the experiment. 

Two typical torque vs. time plots are shown in Figure 
6. As can be readily seen, the curves closely resemble 
a half sine wave. Assuming that the torque input varies 
exactly as a half sine wave, then 

L ( t )  : Lm simrt 
T 

(15) 

where L( t )  -- torque as a function of time 
Lm ~ maximum torque achieved 

t ~ time 
T ~ period of torque application 

For rotation about one of the principal axes of inertia 

we have 
I~o = L (t) z Lm simrt 

T 
(16) 

where 
I z moment of inertia 
,~ = angular acceleration 

Assuming I is constant, we have after integrating 

(17) 

and at t = T 

IcJ~= 2Lm, T 

(18) 

= 2LINT 

~r ~r 
(19) 

where ~oT -~ angular velocity at t ~ T 
Two subjects were tested and the analytical results 

fell within • 10 per cent of the experimental results. 

SUMMARY 

The mathematical model developed to represent 
weightless man is based on the biomeehanical properties 
of the human body. Because there are no methods of 
determining many of these properties accurately from 
a liVing subject, statistical data are used which depend 
on the total body weight. Body dimensions, however, 
can be measured for any given living subject. 

An analysis of the 14-segment model reveals that the 
transfer terms are the most important parts of the total 
moments of inertia, but that the local inertia terms of 
the torso are quite significant for some axes. Because 
the transfer term "rod 2" depends upon the square of 
the distance between the mass center and the inertia 
axis, it is more sensitive to variations in distance than to 
mass variations. Hence, a model based on anthropome- 
try of a given subject will reflect the dynamic response 
characteristics of that subject. 

The system of equations presented for the body mass 
center and moments of inertia is based on the knowl- 
edge of the mass center and the three principal moments 
of inertia for a given position. These quantities can be 
computed as in Reference 8, or determined experi- 
mentally. The system of equations then yields these 
quantities for any other position. 

A useful application of these equations would be in 
conjunction with an extra-vehicular operations simu- 
lator/trainer for the astronaut. Here the equations 
would present the human parameters as inputs into the 
dynamic response characteristics of a personal pro- 
pulsion and stabilization system being simulated. If a 
full scale trainer is used such that the astronaut is sus- 
pended free to move all limbs, linkages could be at- 
ta.ched to the limbs so that limb position could be con- 
stantly fed into a computer. The necessary human 
parameters could be represented as a function of time 
during training maneuvers, and programmed into the 
simulator. 

While the experiment to determine moments of 
inertia was crude, the irfformation obtained on the mag- 
nitude, duration, and variation of the torque output of 
weightless man should be useful to many researchers. 
Most significant was that the torque varied as a half sine 
wave. Further, it was noted that the subjects could only 
exert 2/3 of their peak 1-g torque while weightless. 
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